This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Multinuclear NMR Spectroscopy and Quantum-Chemical Studies of Sulfur Compounds with Strong Electron-Withdrawing Groups

Vladimir Bzhezovsky^a; Vladimir Penkovsky^a

^a Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine

To cite this Article Bzhezovsky, Vladimir and Penkovsky, Vladimir (1994) 'Multinuclear NMR Spectroscopy and Quantum-Chemical Studies of Sulfur Compounds with Strong Electron-Withdrawing Groups', Phosphorus, Sulfur, and Silicon and the Related Elements, 95: 1, 413-414

To link to this Article: DOI: 10.1080/10426509408034256 URL: http://dx.doi.org/10.1080/10426509408034256

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MULTINUCLEAR NMR SPECTROSCOPY AND QUANTUM-CHEMICAL STUDIES OF SULFUR COMPOUNDS WITH STRONG ELECTRON-WITHDRAWING GROUPS

VLADIMIR BZHEZOVSKY and VLADIMIR PENKOVSKY Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine

The compounds CH_3XCH_3 (1), CH_3XCF_3 (2), $C_6H_5XCF_3$ (3) and $C_6H_5XC_6H_5$ (4), where X: a, S(O), b, S(NSO $_2CF_3$), c, SO $_2$, d, S(O)NSO $_2CF_3$, e, S(NSO $_2CF_3$) $_2$, were studied by 1H , ^{13}C , and ^{19}F NMR spectroscopy and by MO-SCF method in MNDO-PM3 valence approximation. The peculiarity of the structure of the X group is a deficiency of electron density on the sulfur atom and a high negative charge on the neighboring O and N atoms. The S-N bond polarity is higher than that of the S-O bond. The S-N bond index is nearly unity (1b 1.06, 1d 0.98, 1e 1.02) and is lower than for the S-O bond (1a 1.24, 1c 1.19). Hence, the S-O and S-N bonds in 1-4 cannot be considered as double ones. They are strongly polarized with a prevailing contribution of the electrostatic component, the covalent contribution being low. In compounds with NSO $_2CF_3$ groups total electronic charge on the X group is higher than in 1a-4a and 1c-4c. As a consequence, total electronic charge on the CH $_3$, CF_3 and C_6H_5 groups is lower in compounds 1-4b, d, e than in corresponding compounds with X = SO, SO $_2$. Changes of total charge on the benzene ring in 3 and 4 are mainly related to the σ electron density change.

The 1 H and 19 F nuclei of the CH₃ and CF₃ groups are deshielded from 1a, 2a to 1b, 2b, in harmony with the decrease of calculated charges on these atoms; the 13 C nuclei shielding increases, however. The 1 H and 13 C nuclei of the CH₃ group are deshielded from 1c to 1d. The paramagnetic term of the 13 C nuclei shielding constant for the CH₃ and CF₃ groups is considerably affected by the changes in the nearest electron environment. This is the reason of an irregular character of the δ C changes in 1-2. A linear relation exists between δ H values of the CH₃ group and calculated charges on H atoms (r = 0.991). The δ C^{para} and δ C^m in 3a-d (ppm from TMS) imply the increases of electron-withdrawing properties of the XCF₃ moiety towards the benzene ring when introducing nitrogen-containing groups; δ C^m: 130.5 (3a), 132.2 (3b); 131.3 (3c), 132.2 (3d); δ C^{para}: 134.5 (3a), 137.2 (3b); 138.1 (3c), 139.8 (3d). The δ C^{para} values are linearly correlated with π and total charges on C atoms (r = 0.994). The σ 1 and σ 2 constants of the XCF₃ groups were evaluated from 13 C NMR spectra; σ 1(X): 0.63 (a), 0.95 (c), 1.08 (b), 1.32 (d); σ 2(X): 0.17 (a), 0.22 (b), 0.29 (c), 0.33

(d). The σ_R values practically coincide with the available data from ¹⁹F NMR spectra; σ_I values are in satisfactory accord with them. The X moieties with NSO₂CF₃ groups are stronger electron-withdrawing substituents than the NO₂ group (σ_I = 0.57; σ_R = 0.20). The series 4 was the only one where an extremely strong withdrawing effect of the X moiety was demonstrated for 4e. On the ground of our theoretical and experimental results we suggest that the S(NSO₂CF₃)₂CF₃ substituent will be a champion of electron-withdrawing properties among all known neutral substituents.

Compounds $\underline{1-4}$ were prepared by Dr. N. V. Kondratenko, Dr. R. Yu. Garlauskaite, and Professor L. M. Yagupolsky.